Graph Database Modeling Audiolibro Por Ajit Singh arte de portada

Graph Database Modeling

Muestra de Voz Virtual

$0.00 por los primeros 30 días

Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Graph Database Modeling

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $6.50

Compra ahora por $6.50

Confirma la compra
la tarjeta con terminación
Al confirmar tu compra, aceptas las Condiciones de Uso de Audible y el Aviso de Privacidad de Amazon. Impuestos a cobrar según aplique.
Cancelar
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..

Acerca de esta escucha

This book, "Graph Database Modeling," is born out of the necessity to equip the next generation of technologists, engineers, and data scientists with the mindset and skills required to navigate this new paradigm. It is designed to be more than just a technical manual; it is a guide to mastering the art and science of modeling the world as it truly is—a network of interconnected entities.


Key Features:


1. NEP 2020 Aligned Pedagogy: Focuses on conceptual understanding and practical skill development over rote learning.
2. Lucid and Simple Language: Complex topics are broken down into easy-to-understand sections, making the book accessible to beginners.
3. Abundant Practical Examples: Uses relatable scenarios like social networks, e-commerce, and logistics to illustrate every concept.
4. Dual Model Coverage: Provides in-depth coverage of both the Labeled Property Graph (LPG) model and the W3C standard RDF model.
5. Hands-On Querying: Features dedicated chapters on Cypher and SPARQL, the two most important graph query languages, with ready-to-run code.
6. Core Modeling Chapter: A unique chapter dedicated to the art and science of graph data modeling, covering methodologies, patterns, and anti-patterns.
7. Advanced Topics for M.Tech: Includes chapters on graph algorithms, system architecture, scalability, and security to cater to advanced learners and aspiring architects.
8. Future-Forward Outlook: Concludes with a look at cutting-edge topics like Graph Neural Networks (GNNs) and the role of graphs in modern AI.


Who Should Read This Book?


1. B.Tech and M.Tech students of Computer Science and IT.
2. Software Developers and Engineers looking to transition to graph technologies.
3. Data Scientists and Analysts seeking to leverage graph analytics.
4. Database Administrators and Solution Architects designing modern data platforms.
5. Faculty and educators looking for a comprehensive textbook on graph databases.


By the end of this book, you will not only understand the technicalities of graph databases but will also possess the skills and confidence to model any complex system, transforming data into insight and knowledge.
Todavía no hay opiniones