Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Audiolibro Por Aurélien Géron arte de portada

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Concepts, Tools, and Techniques to Build Intelligent Systems (3rd Edition)

OFERTA POR TIEMPO LIMITADO

3 meses gratis
Reserva: Pruébalo por $0.00
La oferta termina el 31 de julio, 2025 a las 11:59PM PT.
Elige 1 audiolibro al mes de nuestra colección inigualable.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95/mes después de 3 meses. Cancela en cualquier momento.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

De: Aurélien Géron
Reserva: Pruébalo por $0.00

$0.00/mes despues de 3 meses. La oferta termina el 31 de julio, 2025 a las 11:59PM PT. Cancela en cualquier momento.

Resérvalo en preventa por $24.49

Resérvalo en preventa por $24.49

Confirmar precompra
la tarjeta con terminación
Al confirmar tu compra, aceptas las Condiciones de Uso de Audible y el Aviso de Privacidad de Amazon. Impuestos a cobrar según aplique.
Cancelar

Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems.

With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started.

You'll discover how to use Scikit-learn to track an example ML project end to end; explore several models, including support vector machines, decision trees, random forests, and ensemble methods; exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection; dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers; and more.

©2023 Aurelien Geron (P)2023 Ascent Audio
Todavía no hay opiniones