
#47: Test Data Management meets Data Science
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
Acerca de esta escucha
Nach einer erkenntnisreichen Abwägung der Frage: “Synthetische Daten oder Livedaten” kommt Alexander im Podcast mit Markus schnell zur praktischen Bedeutung der Datenwissenschaft (Data Science) für das Testdatenmanagement. Er platziert das Thema in ein Set von eigenen Datenregeln, die sich auf Technik, Datenqualität und Realiltät beziehen. Am Beispiel der Verwendungsanalyse von realen Daten und der Datenreduktion macht Alexander den praktischen Bezug der Data Science für das Testdatenmanagement erkennbar. Die Zeitvorteile, die sich aus der Anwendung des Datenwissen insbesondere bei großen Datenmengen ergeben, deuten für Alexander auf eine weiter steigende Bedeutung des Themas in der Zukunft hin.
Alexander Becker kann kontaktiert werden via email (alexander.becker@gmx.de) oder linkedin https://www.linkedin.com/in/alexander-becker-aa075621
Grundlagen:
Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking
Online Kurse/ Materialien von IBM
Was ist maschinelles Lernen (ML)? | IBM
Was ist Clustering? | IBM
Was ist k-Means-Clustering? | IBM