
LM101-083: Ch5: How to Use Calculus to Design Learning Machines
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Acerca de esta escucha
This particular podcast covers the material from Chapter 5 of my new book “Statistical Machine Learning: A unified framework” which is now available! The book chapter shows how matrix calculus is very useful for the analysis and design of both linear and nonlinear learning machines with lots of examples. We discuss how to use the matrix chain rule for deriving deep learning descent algorithms and how it is relevant to software implementations of deep learning algorithms. We also discuss how matrix Taylor series expansions are relevant to machine learning algorithm design and the analysis of generalization performance!!
For additional details check out: www.learningmachines101.com and www.statisticalmachinelearning.com
Todavía no hay opiniones