
Tracking Drift to Monitor LLM Performance
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Acerca de esta escucha
In this episode, we discuss how to monitor the performance of Large Language Models (LLMs) in production environments. We explore common enterprise approaches to LLM deployment and evaluate the importance of monitoring for LLM quality or the quality of LLM responses over time. We discuss strategies for "drift monitoring" — tracking changes in both input prompts and output responses — allowing for proactive troubleshooting and improvement via techniques like fine-tuning or augmenting data sources.
Read the article by Fiddler AI and explore additional resources on how AI observability can help developers build trust into AI services.
Todavía no hay opiniones